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BIKE-SHARE SYSTEMS: ACCESSIBILITY AND AVAILABILITY

Abstract. The cities of Paris, London, Chicago, and New York (among others) have recently
launched large-scale bike-share systems to facilitate the use of bicycles for urban commuting. This
paper estimates the relationship between aspects of bike-share system design and ridership. Specif-
ically, we estimate the effects on ridership of station accessibility (how far the commuter must walk
to reach a station) and of bike-availability (the likelihood of finding a bike at the station). Our anal-
ysis is based on a structural demand model that considers the random-utility maximizing choices
of spatially distributed commuters, and it is estimated using high-frequency system-use data from
the bike-share system in Paris. The role of station accessibility is identified using cross-sectional
variation in station location and high -frequency changes in commuter choice sets; bike-availability
effects are identified using longitudinal variation. Because the scale of our data, (in particular
the high-frequency changes in choice sets) render traditional numerical estimation techniques in-
feasible, we develop a novel transformation of our estimation problem: from the time domain to
the “station stockout state” domain. We find that a 10% reduction in distance traveled to access
bike-share stations (about 13 meters) can increase system-use by 6.7% and that a 10% increase in
bike-availability can increase system-use by nearly 12%. Finally, we use our estimates to develop
a calibrated counterfactual simulation demonstrating that the bike-share system in central Paris
would have 29.41% more ridership if its station network design had incorporated our estimates of
commuter preferences—with no additional spending on bikes or docking points.

1. Introduction

Urban agglomerations across Asia, Europe, and the Americas are faced with unprecedented
traffic congestion and poor air quality that threatens their attractiveness to citizens and businesses.
Only three of the 74 Chinese cities monitored by the central government managed to meet official
minimum standards for air quality in 2013 [Wong, 2014]. In March 2014, levels of suspended
particulate matter in the air above Paris reached twice the permissible level, which led to driving
restrictions [Rubin, 2014]. Likewise, many large US cities are in a state of “non-attainment” with
respect to their clean air requirements.1 Passenger vehicles are the major culprit in each case: 45%
of air pollution in European cities can be directly attributed to private passenger vehicles, and that
figure reaches 80% for some Asian cities.2

Traffic congestion worsens air quality and is a scourge in its own right. An average US commuter
loses 34 hours and $750 annually to traffic congestion; commuters in Washington DC, Los Angeles,
San Francisco, and Boston lose twice as much time and money.3 An average resident of Paris
loses €2,883 each year because of traffic congestion, costing the French economy some €17 billion
1“Green Book”, US Environmental Protection Agency, 2 July 2014, http://bit.ly/EPAGreen
2“Changing Gears: Green Transport for Cities”, World Bank and Asian Development Bank Report, 2012.
3“Urban Mobility Report”, Texas A&M Transportation Report, 2012.
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2 BIKE-SHARE SYSTEMS: ACCESSIBILITY AND AVAILABILITY

annually [Negroni, 2014]. Emerging market mega-cities (Bangkok, Manila, Kuala Lumpur, Delhi,
Mumbai, and Ho-Chi Minh City, inter alia) routinely break traffic congestion records, and Asian
economies lose from 2% to 5% of their annual GDP to traffic congestion.

The use of bicycles helps to alleviate both traffic congestion and poor air quality. Bicycles
can substitute for polluting vehicles on short trips, and they facilitate the use of environmentally
efficient public transport for long trips by providing effective “last mile” connectivity. The use of
bicycles also reduces road congestion: compared with a typical passenger vehicle, which occupies
115 m3 of road space, a bicycle makes do with only about 6 m3 [Rosenthal, 2011]. However, the
adoption of bicycles by commuters remains low in most major cities. The main barriers are the lack
of safe parking spaces for bikes in urban dwellings and at public transit hubs, vandalism and theft
of bikes, and the inconvenience and cost of owning and maintaining a bike. Bike-share systems
address each of these concerns.4

A typical bike-sharing system includes a communal stock of sturdy, low-maintenance bikes dis-
tributed over a network of parking stations. Each station provides 10–100 automated parking spots,
or docking points, and a networked controller interface. A registered commuter can “check out” any
available bike from a station and, at the end of her commute, can return the bike to any station in
the network. Registration often requires the commuter to pay a security deposit. Usually the first
half hour of use is free of charge and subsequent intervals are progressively more expensive.

From an individual commuter’s point of view, bike-share systems eliminate the inconvenience of
bike ownership, the need to find parking places, and the fear of theft and vandalism. Moreover,
being able to take a bike from one station and drop it off at another facilitates one-way trips and
the use of different modes on round trips. A crucial system feature is that bicycles can be used
as an effective last-mile feeder system to other public transit systems, such as metro rail or bus
systems.

While bike-sharing systems have existed since the 1950s, there has been renewed interest since
the successful implementations in France in 2006. As of April 2013, these systems had spread across
Europe, the United States, and Asia—there were more than 530 bike-sharing systems in operation
around the world with a total fleet of about 517,000 bikes. Paris, Barcelona, London, Wuhan,
Hangzhou, Shanghai, New York City, and Chicago have all implemented large-scale systems.5

Although bike-sharing systems have garnered considerable attention, their promise is far from
being fully realized. Despite widespread enthusiasm among citizens, ridership in some systems has
fallen short of projections and there is increasing pressure on operator finances. More importantly,

4In the words of Chicago transportation commissioner Gabe Klein: “There is no holy grail, but a public bike share
is pretty close.” http://bit.ly/1pTaagl
5Janet Larsen, “Bike-Sharing Programs Hit the Streets in Over 500 Cities Worldwide”, Earth Policy Institute, 25
April 2013; and Wikipedia entry on the “bicycle sharing system”.
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current ridership levels are well short of meeting the challenge of transforming urban transportation.
A key reason for the lacking ridership is that while providers and operators have focused on bike-
design and technology aspects, there is almost no rigorous analysis of operational aspects such as
station location, system-reliability, nor are the commuter responses to such aspects understood
[Tangel, 2014]. The aim of this paper is to identify relationships between ridership and design
aspects of a bike-share system and, to illustrate the use of these relationships in designing systems
that achieve higher ridership.

In particular, we estimate the impact on ridership of two factors: station accessibility, or how
far a commuter must walk to reach a station; and bike-availability, or the likelihood of finding a
bike at the station. There are, in turn, two aspects of bike-availability. The immediate one is
that commuters must walk longer (or use other means of transport) if nearby stations don’t have
bikes. The more subtle, long-term aspect of availability is that—to the extent that the system is
less reliable in this regard—commuters are less likely to incorporate bike-sharing into their daily
commute or to make long-term commitments (e.g., forgoing their cars, choosing to live in an urban
area).

We conceptualize commuter behavior in bike-share systems as a choice between differentiated
products. Thus, each commuter is viewed as a consumer, each station is a different product,
the distance to a station and its historic bike-availability are product characteristics, and the
set of stations with available bikes is the consumer’s choice set. Our parameters of interest are
commuter preferences for distance and for historic bike-availability. Note here that the first product
characteristic (distance to the station) is a characteristic that is both station and commuter specific.
A reduced-form, station-level model would need to consider a representative commuter, and in such
a model the effect of distance is confounded with the effect of the station’s “catchment” area; that
is, stations far away from other stations require that commuters walk farther but also have a
larger catchment area. An alternate approach would be to build a model at the commuter–station
level, but that would require observing the start point of every commuter—data that are available
neither to us nor to any bike-share operator. To avoid the pitfalls of either approach, we develop a
structural demand model based on a random utility maximization framework (as in [Berry et al.,
1995], “BLP” henceforth) that uses only station-level data yet recovers the effect of distance on
commuter choice.

Our model considers a population of potential commuters distributed randomly across the oper-
ation area with a parametric spatial density. Each individual commuter chooses between different
stations and an outside option (i.e., some other means of transport). That choice is based on the
commuter’s propensity to bike, the commuter’s distance from the different stations, and the historic
bike-availability at those stations. Next, we aggregate individual commuter decisions to derive the
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number of originating trips from different stations, using the spatial density of commuters. This
random commuter origin in our model is akin to the random coefficients used in the traditional
BLP approach.

Commuter preferences for historic bike-availability are estimated using longitudinal variation in
that availability. Preferences for distance are estimated using cross-sectional variation, among sta-
tions, in the distance that commuters must travel to access them. As stations run out of bikes and
get replenished, the commuters’ choice sets change; these changes provide us with another level of
variation—in product offering—in addition to variation that arises from the spatial segregation of
commuters and stations. In the same way as changing choice sets improve the efficiency of identify-
ing random coefficients in the traditional BLP method, longitudinal variation in the stockout state
of stations (and the resulting changes in choice sets) helps us efficiently estimate our parameters
in the presence of unobserved commuter heterogeneity in their origin location. This estimation
directly reveals the long-term effect of bike-availability (through the historic bike-availability co-
variate), and the short-term effect of bike-availability can be determined by comparing system-use
among different choice sets.

We estimate our model using data from the Vélib’ bike-share system in Paris. Our data is based
on observing, every two minutes, 349 bike stations in central Paris for a period of four months.
There are more than 22 million such observations (or data “snapshots”), which correspond to more
than 2.5 million bike trips. As a result, our data is orders of magnitude larger than the data
typically used in structural demand models. These high-frequency data can make our estimates of
commuter preferences precise; but they also lead to high-frequency changes in the choice sets, which
renders the usual numerical approaches to estimating structural demand models computationally
infeasible.

To deal with this computational challenge, we develop a novel transformation of the data. We
notice that, in the context of our model, the (two-) minute-to-minute variation in use at the station
level is affected only by the contemporaneous variation in the choice sets available to commuters
and in some fixed effects (i.e., month, time of day). Hence we can transform our data from the
time domain to the domain of available choice sets, aggregating different times with the same
choice sets (and same fixed effects) into a single data point located in what we call the stockout
state domain. However, the space of systemwide stockout states is still too large to constitute
enough of an improvement over the time domain; after all, in theory that space contains as many
as 2# stations elements. But since choices by each commuter are made only between nearby stations,
we can further improve our setup simply by creating local stockout states for each station and then
aggregating data points with common local stockout states (and same fixed effects). This drastically
reduces our computational load, though it requires that we carefully account for consistent local
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stockout states at neighboring stations. Altogether, this transformation of the data allows us to
obtain precise estimates from large spans of data that exploits the high-frequency variation in choice
sets for identification while managing the computational burden.

Our estimates imply that a 10% decrease in distance (about 13 m) traveled to access bike-share
stations can increase system-use by 6.7% (61,140 additional trips each month). A 10% increase in
bike-availability can increase system-use by about 12% (109,530 more trips/month). We also find
that only 4.4% of the demand substitutes to nearby stations when confronted with a stockout at
the station of choice; this low figure is consistent with the significant positive effects of reducing
distance to stations and improving bike-availability.

These estimates can be used to improve the performance of extant systems by enabling system
managers to estimate and trade off the social and financial benefits of increased ridership with the
costs of system improvements that reduce distances (e.g., by adding extra stations) or increase
bike-availability (adding bikes to the system, increasing trans-shipment of bikes from one station
to another, etc.). At the same time, such estimates can also serve as key inputs for the design of
new systems.

We illustrate a use of our estimates by providing a counterfactual study of alternate station
network designs. Specifically, we use our estimates to calibrate a simulation that predicts the
ridership of different station network designs that incorporate the same number of bikes and docking
points but place different priorities on the competing demands of station accessibility versus bike-
availability. Whereas a network with more stations but fewer bikes at each one reduces distances to
station and so increases accessibility, fewer stations with more bikes at each can achieve higher bike-
availability owing to the statistical benefits of holding pooled bike inventory. Hence knowledge of
how commuters value these two aspects of system design can lead system designers to make optimal
trade-offs between them. We identify the optimal design and find that the bike-share system in
central Paris would have 29.41% more ridership (268,440 more trips/month) if it had incorporated
our estimates of commuter preferences in the design of its station network. That improvement does
not require spending any additional resources on bikes or docking points, which are the main costs
to public agencies that institute these systems.

Overall, the large effect of our estimates highlights the considerable improvement opportunities
in bike-share systems that could result from greater use of data. More generally, our work illustrates
the substantial impact of facility location and inventory availability—two objectives of concern to
operations management research since the field’s inception—in the context of new models for urban
transport.

Although the results reported here are developed in the context of bike-sharing systems, it
is likely that our estimated effects of accessibility/distance on consumer utility apply in many
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contexts; examples include other public transit systems, retail stores, and consumer services (banks,
dry cleaning, hotels, etc.). Our estimates concerning the role of bike-availability could serve as
benchmark availability metrics for the design of other on-demand transportation systems, such as
as taxi-hailing apps (e.g., Uber, Lyft, EasyTaxi). The accessibility–availability trade-off in station
design is hardly unique to bike-sharing systems. Designing networks of retail stores, hotel chains,
car-share stations, and other location-based services involves similar trade-offs. In such contexts,
“availability” may correspond to product availability, assortment, or quality of service; there are
also similar accessibility concerns. Our analysis can inform choices in each of these contexts.

Our study makes three important contributions. We provide the first empirical analysis of
commuter response to accessibility (walking distance) and availability (service level) in the context
of public transport systems. As we illustrate, this analysis can help design much-improved transport
systems. Second, the methodology developed in this paper can be used in a variety of demand
estimation contexts where products are spatially differentiated with a high frequency of changing
choice-sets. Finally, our research extends the thriving empirical operations management research
on estimating the role that service levels play in demand, by adding previously unstudied aspects—
availability and accessibility in the context of bike-share systems—to the elements already addressed
in the literature (waiting time, product variety, queue length, warranties, etc.). Further, to the best
of our knowledge, this is the first study to consider these connected notions jointly.

2. Literature Review

This paper is related to research on bike-sharing systems and on customer response to accessibility
and availability. Our work is also related to the operations management tradition of considering
spatial issues (facility location, vehicle routing, etc.). Finally, our techniques are inspired by demand
estimation models from empirical industrial organization.

2.1. Bike-Sharing Systems. There is an emerging literature on bike-sharing systems in differ-
ent areas of study. One stream of this literature uses mixed-integer programming and numerical
calibration methods to examine policies for managing the trans-shipment of bikes in a bike-share
system [Nair and Miller-Hooks, 2011, Nair et al., 2013, Raviv et al., 2013]. George and Xia [2011]
use their approximation of a closed queuing network to determine the optimal number of bikes in
a system. Daddio [2012] uses data from the Washington DC bike-share system to suggest that
demand at a station can be predicted by the demographic characteristics (population, race, num-
ber of retail locations) and geographic features (distance to metro/rail) of a station’s catchment
area. Lathia et al. [2012] examine the nature of increase in bike-share utilization, after the London
bike-sharing system was opened to casual users. O’Brien et al. [2013] classify bike-sharing systems
based on different intra- and interday usage patterns.
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2.2. Accessibility. The notion of accessibility has appeared in previous research on transportation
systems design. Murray and Wu [2003] formulate an integer linear program for transit-stop location
that trades off the distance to transit stops against the inconvenience of transit vehicles that
stop too often. They apply this model to real geographic data from Columbus, Ohio; yet absent
information about commuter preferences for accessibility or transit time, the model cannot provide
recommendations. El-Geneidy et al. [2014] survey commuters on their walking distance to different
transit systems (rail, bus) and find that, in Montreal, the 85th percentile walking distance to the bus
(resp., rail) transit system is about 524 meters (resp., 1,259 m). Accessibility has also been studied
in the context of retail network design; approaches include the use of gravity models (Reilly [1931],
Huff [1964]) and discrete choice models of consumer preferences (Craig et al. [1984], Fotheringham
[1991], Davis [2006], Pancras et al. [2012]). Unlike our study, these analyses consider only the effect
of commuting distance and do not consider related service concerns (e.g., product/bike availability).

2.3. Availability and Service Level. Our notion of bike-availability corresponds closely to the
well-studied concept of service level in operations management. In the context of retail consumer
goods, Musalem et al. [2010] study the effect of product stockouts and Olivares et al. [2011] the
effect of waiting times at grocery stores. Anderson et al. [2006] use field experiments to look at
the short- and long-term impact of stockouts in the context of a mail-order catalog service. In the
fast-food sector, Allon et al. [2011] study the waiting time at drive-through locations and evaluate
its effect on demand. In the automobile industry, Guajardo et al. [2014] conceptualize service level
as warranty length and quality of after-sales service; these authors examine the effects of service
level so defined, and Moreno and Terwiesch [2013] evaluate the impact of product variety. For the
retail banking industry, Buell et al. [2014] look at the customer response to service levels and discuss
the consequences for competition. Parker et al. [2013] consider the quality of information services
and the effect of that quality on marketplaces. Most close to our context, in the transportation
sector, is the paper of Arikan et al. [2013], who study the effect of increasing airport capacity on
flight delay propagation—reduced service levels to consumers.

To the best of our knowledge, there is no extant research that seeks to identify the drivers of com-
muter behavior in bike-share systems. Neither are we aware of previous work that simultaneously
addresses the notions of availability and accessibility in this (or any other) context.

2.4. Facility Location and Spatial Models in Operations. The vast majority of research on
facility location provides analytical methods for computing cost-reducing designs given consumer
preferences [Melo et al., 2009]; in contrast, our work seeks to estimate those consumer preferences.
Some recent work has tackled environmental issues. For example, Cachon [2014] considers network
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(a) Paris Arrondissements (b) Number of Observations

Number of Snapshots Raw Data 22,542,770
Removing Weekends 15,990,831
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Figure 3.1. Vélib’: Data Description

design decisions made by a retail store and analyzes the trade-offs among operating costs, avail-
ability, and carbon emissions; Belavina et al. [2014] study the role of city geography and of online
grocery shopping on emissions stemming from travel and food waste. More closely related to our
research are the papers by Li et al. [2014] and Lederman et al. [2014], which develop data-driven
approaches to identifying competitors in spatially differentiated markets.

2.5. Demand Estimation. Our estimation technique builds on the seminal work of Berry et al.
[1995], where consumer preferences are estimated using only market share data at the product level.
Whereas products in BLP are differentiated in terms of their physical attributes, our “products” are
stations that are differentiated in terms of their spatial location and their bike-availability. Davis
[2006] applies the BLP approach to the spatial differentiation of cinema chains (much as in our set-
ting), but his study does not address issues involving service level or stockouts; recall that the latter
alters user choice sets in real time. Pancras et al. [2012], in addition to geographic differentiation
as in Davis, also models goodwill dynamics over time. Yet to the best of our knowledge, our paper
is the first using empirical methods to capture spatial product differentiation with rapidly changing
choices sets. The rapidly changing choice sets necessitates the development of a new estimation
procedure.

3. Data Description

We estimate our model using data from the Vélib’ bike-share system in Paris. Of all the major
systems, Vélib’ has the most bikes per capita: about 10 times more than London’s bike-share system
and 100 times more than the system in lower Manhattan.6 Vélib’ has more than 1,200 stations
with some 17,000 bikes on which nearly 173 million trips were made during the system’s first six
years of existence. The environmental impact is estimated to be a reduction of more than 137,000
tonnes of CO2 emission equivalents; the effect on commuter health is also significant in that some
19 billion calories were burned by bike riders during this period.

6“Paris fête les six ans de son Vélib’ (en infographie)”, Mes Débats, 15 July 2013, http://bit.ly/14Cn6n6
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Our data set is built by capturing the status of each station in the network every two minutes,
via the programing interfaces available for Vélib’.7 Each two-minute observation that we collect
contains the number of available bikes and the number of empty docking points at all stations. The
city of Paris proper (Paris intra-muros) is divided into 20 arrondissements or districts that are
numbered in a spiral pattern; see Figure 3.1(a). Of these, we restrict our attention to the 10 central
districts (1st–10th arrondissements). This area, which covers about 9 square miles (23 km2), is
the most densely populated part of Paris and includes a mix of residential, retail, commercial,
public, and historical establishments. And since these districts constitute a contiguous inner core
of the city, all adjacent areas are also in the city of Paris and so have equal access to Vélib’. We
thus reduce the “edge effects” that might arise from using any of the outer districts (i.e., of the
11th–20th).

We monitor these stations over a four-month period starting in May 2013; however, the first
month’s observations are used only to establish historic levels of bike-availability for subsequent
months. The Paris bike-share system had been in operation for more than six years at the time
of data collection. It is reasonable to assume that, at this stage, the system is likely in a steady
state: we expect there to be few perturbations due to changes in the station network, increasing
awareness of the system, or change in system management policies. The months of May, June,
July, and August have similar average temperatures and precipitation levels, reducing spurious
variation caused by changing weather. Furthermore, these months are also the most favorable
ones for use of the system and so are the months in which it experiences considerable variation
in bike-availability—which facilitates our estimating the effects of that variation. We eliminate
data snapshots collected on weekends because commuter preferences on those two days may differ
substantially from their weekday preferences. Note also that commuter patterns on weekdays (and
in summer months) are the most important because it is at such times that increased bike use has
the maximum possible benefit in terms of reducing traffic congestion and improving air quality.
For these reasons, the city should design its system so as to maximize its use during that period.
Altogether, our data set includes 22 million snapshots of 349 bike stations (Figure 3.1(b)).

Next we convert these snapshots into our variables of interest. We assume that each decrement
in a station’s number of available bikes (at the two-minute observation interval) is an instance of a
bike being checked out and used. One could argue that a declining number of bikes merely signifies
the net result of simultaneous check-outs and returns of bikes. However, the average rates of both
activities within a two-minute interval are low; check-outs and returns at a station also exhibit a
negative temporal correlation, which implies that the likelihood of such contemporaneous events
are extremely small (observed rates of these activities indicate that such simultaneity occurs at

7Oliver O’Brien, “Bike Share Map”, 31 August 2013, http://bikes.oobrien.com/paris/
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Figure 3.2. Vélib’ Stations: Usage and Bike Availability

a frequency of less than 1%). Therefore, any errors that result from our making this particular
assumption will almost certainly be insignificant.

The Vélib’ system managers regularly transfer bikes from full stations to empty ones, a procedure
that could confound our usage data. We therefore omit the data from any two minute period in
which more than three bikes are checked out, which we interpret either as trans-shipment by
system managers or as outliers in the usage. That scenario rarely occurs, so even this conservative
elimination allows us to retain over 95% of the data. Thus we construct our main dependent
variable, station-level use in a given two-minute interval. Results of our analysis are unchanged
when other thresholds are used for eliminating outliers.

When not stocked out, a typical station in central Paris is the starting point for 4.05 rides/hour;
this rate can increase by a factor of 15 during the peak late-night hours. Figure 3.2(a) shows
the mean use by station; here and henceforth, by “station-use” we mean the number of trips that
originate at a station in a unit time—conditional on bikes being available at that station. In the
figure, bubble sizes correspond to the level of station-use. We observe that stations in different
districts have systematically different levels of use, which suggests the need for controls at the
district level. Also, stations with fewer neighboring stations generally have higher use. A naive
interpretation (as would arise, e.g., from estimating a station-level model) of this result is that
the increasing distance to stations increases use; that is, commuters prefer stations that are farther
away! Such a conclusion is false because station-level use reflects not only commuter preferences for
different station characteristics (where use is decreasing in distance) but also the size of a station’s
catchment area (where use is increasing in distance). Figure 3.3(a)-(c) shows the distribution of
station-use as well as inter- and intraday patterns of station-use.
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Figure 3.3. Station-Use and Bike-Availability Statistics

Our study has three main independent variables, the first of which is the distance that a commuter
must walk to reach different stations. We have the GPS coordinates of each station, which allows
us to compute the distance (“as the crow flies”) to a station from any point in the city. For a
dense city like Paris, this approach yields a close approximation of the walking distance. We also
obtain the precise boundaries of different districts via Keyhole Markup Language files (available
from Google Maps). These boundaries allow us to allocate each point to a particular district.

The other two main independent variables—the set of stations available to a commuter (the
choice set) and the historic bike-availability at each station (the service level)—both derive from
the state of a station: namely, whether or not there are any usable bikes available at the station.
Although we observe the number of bikes available at the station every two minutes, some of these
bikes are not actually usable. First, bikes in these systems are regularly removed from service after
a certain number of trips for purposes of preventive maintenance; we have data on these bikes
and exclude them from our analysis. Second, some bikes are officially in circulation but are in an
undesirable state (e.g., bikes with a broken chain or with bird droppings on its seat). Most stations
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Mean Min 1 Qu. Median 3 Qu. Max
Variables Overall Between Within
Station-Use per min 0.067 0.000 0.018 0.053 0.099 1.000 0.054 0.018 0.051
Distance to nearest station kms 0.166 0.007 0.118 0.159 0.206 0.479 0.075
Av. Distance to 2 nearest stations kms 0.196 0.062 0.146 0.185 0.233 0.493 0.076
Bike-Availability (#bikes>0) fraction 0.894 0.000 0.868 1.000 1.000 1.000 0.204 0.107 0.173
Bike-Availability (#bikes>5) fraction 0.573 0.000 0.158 0.663 1.000 1.000 0.403 0.240 0.324

Standard Deviation

Table 1. Summary Statistics

have a few such bikes, whose condition is such that they are practically unusable and they tend to
be the last remaining bikes at stations. We account for this factor by considering a station to have
usable bikes in stock only if it has more than five available bikes. In addition to accounting for
unusable bikes, arguably this specification also better captures how commuters think of a station’s
bike-availability. A commuter who sees only a small number of bikes may often assume that those
last few are likely unusable or might well be checked out (by other commuters) by the time he
reaches the station.8

Stations that are stocked in at the start of the two-minute period are candidates for the choice
set. We operationalize bike-availability as the fraction of two-minute intervals at whose start the
station is stocked in. Figure 3.2(b) shows the average bike-availability at each station. Note that
stations in district 7 (in the lower left corner of the plot) have much higher availability even though
the station-use levels are comparable to neighboring districts (such as the 8th, which is directly
above the 7th). The 7th district is home to many ministerial offices, embassies, and other centers of
power. Public-sector system managers arguably set higher availability targets depending on such
unobserved station characteristics, suggesting that longitudinal variation in bike-availability may be
more useful rather than either cross-sectional variation (differences across stations) for identifying
the effect of availability. Panels (d), (e), and (f) of Figure 3.3 show (respectively) the distribution
of station-level bike-availability, the hourly pattern of average bike-availability, and the dependence
of bike-availability on station size. Note that larger stations have higher average availability, which
may be an effect of statistical pooling.

Table 1 provides some summary statistics for our data sample. Stations are located 166 me-
ters apart, on average, from the next nearest station, but there is wide variation in this distance.
Bike-availability exhibits significant between-station and within-station variance. The substantial
variation in nearest-neighbor distances suggests that the cross-sectional variation arising from dif-
ferent station network patterns in different parts of the city can be used to estimate distance effects.

8We try many alternate definitions for in-stock stations, such as stations with more than four or with more than six
bikes, stations that are more than 5% or more than 10% full, and stations that have more bikes than the day’s or
the week’s minimum number (if less than 5). Similar results are obtained with each of these alternate specifications;
some are reported in Section 8 (on robustness).
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Variables 1 2 3 4 5 6 7 8 9 10
Number of Stations 29 22 16 25 38 34 30 55 48 52
Station-Use per min 0.065 0.065 0.082 0.085 0.071 0.063 0.069 0.050 0.062 0.079
Distance to nearest station kms 0.109 0.136 0.199 0.172 0.174 0.174 0.272 0.156 0.142 0.154
Av. Distance to nearest 2 stations kms 0.139 0.163 0.235 0.200 0.207 0.198 0.319 0.191 0.166 0.180
Bike-Availability (#bikes>0) fraction 0.914 0.883 0.982 0.965 0.905 0.942 0.986 0.838 0.825 0.852
Bike-Availability (#bikes>5) fraction 0.620 0.554 0.812 0.761 0.617 0.644 0.850 0.427 0.412 0.454

District

Table 2. Summary Statistics by District

Similarly, the substantial within-station variance in bike-availability suggests that we can use lon-
gitudinal variation to derive robust estimates of the bike-availability effect. Table 2 reports the
mean statistics grouped by district. Because most districts have more than 30 stations, we can use
within-district variation as a source of identification; that allows us to use district fixed effects for
cleaner identification.

4. A Discrete Choice Model

Our goal is to estimate the effect on station-use of the distance that commuters must walk to gain
access and of bike-availability. As mentioned before, the walking distance is a characteristic that is
both station and commuter specific. Therefore, estimating its effect directly would require data on
use at the station × commuter-origin-location level—that is, on how many commuters originating
at each location in the city use the system at each station. Yet we have data only on use by
station, or the same kind of data that most system operators have access to—station level and not
commuter-origin-location level.

One method of using data of this type is to estimate the effects from a station-level reduced
form model. In such a model, distance can be included by considering a representative commuter
whose trips originate somewhere between this and the next nearest station—say, 25% of the distance
between this and the next nearest station. The “representative distance” of stations whose neighbors
are farther away would be greater and vice-verse. Recall, however, that any estimate of the role
played by this representative distance would also include catchment area effects. In the case of a
station with relatively distant neighbors, its longer representative distance should decrease use while
its larger catchment area should increase use. This is the case with all such proxies for distance:
the effect of commuter preference for distance is confounded with the effect of station catchment
areas. Even if we constructed proxies that distinguished between these two effects, the utility of
such proxies for estimating precise commuter preference parameters would be limited because they
are but indirect measures of the distance that the commuter experiences directly. Also note that
such proxies would fail to account for the two-dimensional spatial configuration of stations.
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Finally, even for characteristics such as bike-availability that are station specific, a simple station-
level model poses a number of challenges. It is likely that use at any particular station is influenced
by the level of bike-availability (and/or other characteristics) not only of the focal station but
also of other “neighborhood” stations. On the one hand, if these characteristics are observable
then a model can include the covariate for the station and its neighbors but the effect of different
neighbors must be appropriately weighted to account for different proximity essentially involving
the above distance effect even for station-specific characteristics. On the other hand, unobservable
station-specific characteristics make it difficult to estimate a spatially dependent error structure.

To avoid these pitfalls of a reduced-form model, we take a structural model approach that starts
with a choice model for individual commuters at different origin locations and then aggregates
commuter choices to obtain station-level use. This method allows us to recover the structural
parameters of commuter choice while using only station-level data.

Commuter Choice Model. We conceptualize commuter behavior in bike-share systems as a
choice between differentiated products; thus, each commuter is a consumer, each station is a dif-
ferent product, these stations (products) have certain characteristics (distance from the commuter,
historic bike-availability, and unobserved station characteristics at a given time), and the set of
stations with available bikes is the consumer’s choice set. Our parameters of interest are com-
muter preferences for distance and historic bike-availability. Our model adapts the approach of
BLP to consider spatially differentiated products when choice sets change frequently. The spatial
components of our model build on the work of Davis [2006].

Consider a population of utility-maximizing commuters distributed spatially over a given area.
Commuters choose between using a bike-share system accessible through a network of stations and
other modes of transport. The indirect utility of commuter i from accessing the bike-share system
at station f ∈ {1, ..., F} at time t ∈ {1, ...T} is given by

uift = β0 + β1d (Li, Lf ) + β2bafm′w + γf + γm + γw×di(f) + ξft + εift, (4.1)

where Li is commuter i’s origin location and d (Li, Lf ) gives the distance between commuter i and
station f , which is located at Lf . The operator m(t) : {1, . . . , T} → {1, . . . ,M} gives the month
corresponding to the time t; the operator w(t) : {1, . . . , T} → {1, . . . , 6} maps the time to one of
six four-hour “time-windows” in a day (00h00–04h00, 04h00–08h00, etc.); and bafm′w denotes the
historic bike-availability at station f in time-window w (t) and month m (t)−1. (We simplify m (t)
and w (t) to m and w wherever possible, and we use m′ as shorthand for m (t) − 1.) The γf are
station fixed effects, γm are the month fixed effects, and γw×di(f) are the time-window×district fixed
effects; here di (f) is the district for station f . The term ξft denotes the unobservable components



BIKE-SHARE SYSTEMS: ACCESSIBILITY AND AVAILABILITY 15

of utility that are common to all commuters for station f at time t, which is the station × time-
specific shock. The εift are the idiosyncratic commuter × station × time-specific error terms; we
assume that these errors are of type I extreme value, and are independent and identically distributed
(i.i.d.). The covariate baf,m′ ,w captures the long-term effect of bike-availability. Our results are
given for one-month lagged availability, but similar results are obtained with longer and shorter lag
durations.

The commuter could also use other means of transport, in which case her utility is

ui0t = ξ0t + εi0t;

here ξ0t is the unobservable component of this utility that is common to all commuters at time t,
normalized to zero. The εi0t are the idiosyncratic utilities that commuters derive from other means
of transport, which we also assume are type I extreme value, and i.i.d.

We limit the commuter’s potential choice to his nearest md stations within distance dismax; the
set of such nearby stations is denoted by Ni. Let St be the set of stations that are in stock at time t.
The choice-set for commuter i at time t is then Ni∩St. Hence the probability of utility-maximizing
commuter i using a bike from station f ∈ Ni ∩ St at time t is given by

pift (Li, x·mwt; θ, ξ·t) =
exp

(
β0 + β1d (Li, Lf ) + β2bafm′w + γf + γm + γw×di(f) + ξft

)
1 +∑

g∈Ni∩St
exp

(
β0 + β1d (Li, Lg) + β2bagm′w + γg + γm + γw×di(g) + ξgt

) .
Here x·mwt is F -row dimensional matrix of observed station-level covariates (historic bike-availability
bafm′w and the station, month, and time − window × district dummies); ξ·t is the vector of unob-
servable characteristics at time t; and θ represents the parameter values (β0, β1, β2, and all fixed
effects γ).

The net use at station f at time t, or λft, is obtained by aggregating choice probabilities of all
commuters in the population:

λft (x·mwt; θ, ξ·t) =
∫
Li

pift (Li, x·mwt; θ, ξ·t) · PD (Li) dLi,

where PD (Li) is the spatial density distribution of potential commuters’ origin location. We assume
that this density is uniform and calibrated such that the market share of the bike-share system is
10% of the potential commuters in each district (as suggested by survey data on market share).
The heterogeneous origin location Li of commuters in the model implies that, when a station stocks
out, its commuters are then more likely to substitute to nearby rather than distant stations. Hence
our model does not exhibit the independence of irrelevant alternatives property, which is a major
drawback of simpler (e.g., multinomial logit) models. The heterogeneous commuter location in our
model essentially plays the role of the random coefficient in traditional demand models based on
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random utility maximization. Finally, note that use at the stocked-out stations will be zero because
they are not part of any commuter’s choice set.

Note that the model just described captures the impact of bike-availability in two ways. The
first is the long-term effect. From a commuter’s standpoint, consistently being able to find a bike
at a station allows her to reliably plan an itinerary around this trip and to integrate the bike-share
system into her lifestyle choices (where to live and work, whether or not to own a car, etc.). Higher
ex ante probabilities of finding a bike can therefore increase the utility from bike-share use, and this
effect is captured directly by including the historical bike-availability in a commuters’ use utility.

The second impact of bike-availability is the immediate, short-term effect of a stockout, which has
the effect of removing that station from the commuter’s choice set. A stocked-out station cannot
serve potential commuters, but this need not imply that this trip from the system is lost. Some
commuters might decide to change their itinerary and take a bike from the next most desirable
station. The stockout however lowers the utility from bike-share use, leading to more commuters
choosing the outside option; hence some fraction of demand at the stocked-out station would indeed
be lost. This immediate effect of stockouts is indirectly captured in our model through the choice
sets changed thereby and other components of the utility model.

There are some potential endogeneity concerns with our model as regards identifying the effect of
bike-availability. There could be unobserved station- or time-level factors that affect both station-
use and bike-availability. For instance, a fleeting usage shock—due, say, to a station× time specific
unobservable event such as a concert—will lead to both higher use and reduced bike-availability.
Furthermore, there are more persistent unobservable station- or time-level factors that induce
system managers to employ policies to ensure different bike-availability at the station at given
times; leading to a correlation between these unobservable factors and bike-availability. Our model
addresses concerns around fleeting unobserved factors by using lagged bike-availability. Even though
contemporaneous bike-availability and usage shocks may be correlated owing to special events,
such as a concert, it is unlikely that these usage shocks are correlated with lagged or historic bike-
availability. The more persistent unobserved factors are dealt with by our use of both station

and time-window× district fixed effects. Together these ensure our estimates on the effect of bike-
availability are unbiased.

Similarly, consider endogeneity in our estimates for the preferences for distance. One could
argue for the possibility of unobserved station characteristics that lead to a specific design of
station locations and hence to higher or lower use. Our data’s panel structure does not help here;
unlike the case of bike-availability, there is no change over time in the pattern of station locations.
Our model includes time-window × district-level fixed effects, which should allay concerns arising
from any unobservable district-level characteristics in the pattern of station location. We obtain
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similar results if we include fixed effects at the level of quartier (a finer classification of districts
that is roughly equivalent to “neighborhoods”; each Paris district has four quartiers). Together
these analyses ensure that our estimates on the effects of distance are unbiased on account of any
unobserved neighborhood characteristics that systematically drive station location and station-use.

5. Model Estimation

Our estimation procedure builds on the demand estimation algorithm proposed by Berry et al.
[1995] but departs in two important ways. First, we use different identifying assumptions. Whereas
BLP rely on the functional form of the supply side for demand-side identification, we identify our
model using the data’s cross-sectional and longitudinal variation. We identify the bike-availability
coefficient β2 using the longitudinal variation in bike-availability; the distance effect β1 is identified
using the cross-sectional variation in distances across different pairs of stations and commuter origin.
As stations stock out and replenish, the choice sets of commuters change longitudinally—further
facilitating identification of the distance effect. The longitudinal variation in choice sets is akin to
having different markets in the BLP approach.

Our second main departure from the BLP approach arises from the high frequency of our data or,
more precisely, the high frequency with which choice sets change. Traditional numerical estimation
procedures are thus rendered computationally infeasible. We therefore introduce the notion of a
(local) station stockout state, and our estimation is feasible when we transform from the time
domain to this stockout state domain.

Estimation Procedure. The simplest way of estimating our model would be to search over the
parameters θ for values that provide the best fit. This would require a search over a space with
as many dimensions as parameters (including numerous fixed-effects parameters), each iteration
of which involving multiple numerical integrations over the spatial density. We instead estimate
our model using a nested iteration process that relies on all parameters (except β1) entering our
model in a “user-location–agnostic” way. We thus group our parameters in two classes, β1 and the
parameters that are “linear” (in ξft). The outer loop of our nested procedure searches over β1 and
the inner loop estimates the linear parameters (Berry et al. [1995]).

The linear terms in the utility model are grouped together into the composite terms δft:

δft = β0 + β2bafm′w + γf + γm + γw×di(f) + ξft. (5.1)

Our choice model now becomes: ∀f ∈ Ni ∩ St (the choice set of commuter i at time t), commuter
choice probabilities are given as

pift (Li;β1, δ·t) = exp (δft + β1d (Li, Lf ))
1 +∑

g∈Ni∩St
exp (δgt + β1d (Li, Lg))

.
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Use at station f ∈ St at time t is written as

λft (β1, δ·t) =
∫
Li

pift (Li;β1, δ·t) · PD (Li) dLi, (5.2)

where δ·t is the vector of composite terms δft. We start our search with a guess for the value of β1.
Given this β1, we obtain δ·t by equating the actual and predicted use rates for each station–time
pair; that is, we solve the following F×T equations to compute the δ·t for each time:

λft (β1, δ·t) = Λft ∀f ; (5.3)

here Λft is the observed rate of use for station f ∈ St at time t.
Equation 5.4 is then an iterative search process (Berry et al. [1995], Davis [2006]) that converges

to the actual value of δ·t:

δnew.t = δold.t +
(
log (Λ.t)− log

(
λ.t
(
β1, δ

old
.t

)))
. (5.4)

Note that each search iteration (Eq. 5.4) will require computation of λ.t (β1, δ.t)—which, per Equa-
tion 5.2, involves integrating over the spatial density of commuters. We perform this integration
numerically. We discretize the physical area of the ten central districts into a grid composed of
squares with length D meters; we consider the center of each such square to be a point mass of
commuters. Predicted use is then

λft (x·mwt, δ.t;β1) =
∑
i

pift (Li, x·mwt, δ.t;β1) · PD (Li) ·D2,

where D2 is the area of each grid square.
Using this predicted use in Equation 5.4 allows us to search and obtain the δ·t for our guessed

value of β1. Next we estimate the constituent components of δ·t (i.e.,β0, β2, γf , γm, γw×di(f), and
ξft) by using Equation 5.1; this is essentially a standard fixed-effects regression in which δ·t is the
dependent variable and the ξft are error terms. This completes the inner loop by estimating all
other parameters for a given value of β1.

The outer loop then iterates over different values of β1 to identify the β1 that minimizes squared
errors:

β̂1 = arg min
β1

∑
f,t

(γf + ξft)2 . (5.5)

The estimated value for the bike-availability coefficient β2 (from the inner loop, Eq. 5.1) that
corresponds to the least-squares estimator of the distance coefficient β̂1 completes our estimation
procedure. Observe that, when estimating β1, we define the squared errors to include the station
fixed effects γf (Eq. 5.5). The reason is that—although we want to identify the availability effect β2

using the longitudinal variation in bike-availability alone (i.e., in order to avoid bias stemming from
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endogenously set bike-availability)—for the distance coefficient β1 we want to use the cross-sectional
variation also.

Note that even though the nested procedure effectively reduces the dimensionality of the param-
eter search space, the procedure just described remains computationally challenging. Each inner
loop involves an iterative search–based computation of δ·t followed by the estimation of its con-
stituent components. Thus, each iteration of β1 requires an iterative search of F × T parameters,
and each step of this search requires—besides the fixed-effects regression—numerical integrations
over a grid with nearly 9,000 points. To make matters worse, recall that our data are collected at
an extremely high frequency; hence that data include millions of two-minute intervals T . In effect
we must run roughly a billion regressions, iterative searches, and numerical integrations. Such an
approach is computationally infeasible.

The computational burden can be reduced by aggregating data over time or by considering
shorter time periods of data. The latter will reduce the precision of our estimates, especially since
the variability in two-minute use is very high (which entails that large spans of data are needed to
infer robust estimates). The former approach is not helpful, either. Aggregating data over time
would needlessly use aggregate metrics to proxy for information we have on the actual choice sets
available to commuters, and that would introduce unnecessary noise. Moreover, the minute-to-
minute variation in station stockouts creates the changing choice sets that dictate the changing
distances commuters must walk to access stations. This is important for efficiently estimating the
distance effect; aggregating data would eliminate these variations, in which case we would have to
rely only on the cross-sectional variation in distances between stations.

We propose an alternate aggregation in our data to reduce the computational burden while still
being able to exploit the information and variation in choice sets. Note that in our model of station-
use, λft is a function only of the choice set of stations (along with the time-window and month
fixed effects). We can therefore aggregate data points that are in same time-window and month,
and have same choice set of stations, without losing much precision in our estimates—that is, we
aggregate data according to system-stockout-state×month× time-window. Formally, we define the
stockout state vt as an F -dimensional binary vector of the stockout status of each station at time
t. We combine the data points at times in the same month and time-window that share the same
system-level stockout state: Λfmwv is the average Λft, for all t, where t is such that w(t) = w,
m(t) = m, and vt = v. On the model side, the probability of commuter i using a bike from station
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f ∈ Ni ∩ Sv at a system state v in month m and time-window w is given by

pifmwv (Li, x·mw; θ, ξ·mwv)

=
exp

(
β0 + β1d (Li, Lf ) + β2bafm′w + γf + γm + γw×di(f) + ξfmwv

)
1 +∑

g∈Ni∩Sv
exp

(
β0 + β1d (Li, Lg) + β2bagm′w + γg + γm + γw×di(g) + ξgmwv

) .
Here Ni is the set of stations that are near commuter i and Sv is the set of stations with positive
bike stock in state v, so that Ni ∩Sv is the set of nearby stocked stations for commuter i when the
system is in state v. The station-level use can similarly be written as

λfmwv (β1, δ·mwv) =
∫
Li

pifmwV (Li;β1, δ·mwV ) · PD (Li) dLi.

The rest of the estimation proceeds as before.
The anticipated advantage of estimating our model in the stockout state domain (instead of the

time domain) is that there would be fewer distinct stockout states during each month and time
window than there are distinct two-minute time intervals, which scales back the computational
burden significantly. However, since v is defined over the set of all stations in the data (F ≈ 350),
there could be as many as 2Fdistinct values of v. Many distinct values are realized in the data, and
their number in data is of the same order as T; hence the transformed estimation is only slightly
superior to the original model.

We notice that the use at station f is not affected by all the other stations’ stockout states. Recall
that commuters’ choice sets are limited to the nearest md stations within dismax. The implication
is that we can construct a local stockout state for each station and aggregate our data on such local
stockout states rather than on the systemwide stockout states v. The local stockout state will have
lower dimensionality than the systemwide stockout state, so there will be far fewer distinct local
than distinct systemwide stockout states. This approach enables us to reduce the computational
burden drastically even as we continue to utilize the important variation in choice sets. We next
explain the procedure formally.

Note first that, for a station f , the only relevant bike-availability information is the availability
at stations close enough to commuters who are close enough to station f . For any station f , we
can write the set of relevant stations Nf as

Nf ≡
⋃

i| f∈Ni

Ni.

The stockout state at time t of stations in Nf is given by vft—it is the “local” stockout state at
station f . Let the set of all such realized local stockout states be given by Vf ≡

⋃
t vft.
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Next we aggregate the use at station f for all times where the local stockout state was vf , a
typical element in Vf . We use Λfmwvf

to denote the average observed use at station f in month m
and time-window w over all times when the local stockout state is vf . Accounting for the salience
of state vf shall prove useful, so let ωfmwvf

denote the number of observations that were averaged
to obtain Λfmwvf

; these numbers will serve as weights in subsequent analysis.
There is one final complication. The predicted use λfmwvf

arises from the commuter choice
probabilities pifmwvf

, which depend not only on the utility of using station f but also on the utility
of using other stations in commuter i′s choice set (i.e., stations g such that g ∈ Ni∩Svf

). The set of
stations local to station g is not the same as the set of stations local to station f , which means that
the local stockout state of station g is not fully determined by vf , the stockout state of our focal
station f . In other words, multiple (different) local stockout states of station g could correspond to
a given stockout state vf of station f . In computing the predicted choice probabilities, we aggregate
unobservables of all states of Vg that are consistent with vf , where a state vg is consistent with focal
stockout state vf for commuter i if and only if the stockout state of all stations in Ni is the same in
state vg as in vf . Our aggregation presumes that the likelihood of these multiple consistent elements
of Vg being realized when state vf is realized is the same as the unconditional likelihood of any of
these elements arising. We can therefore compute pifmwvf

by using the weighted average value of
station utilities of all the states of gmw that are consistent with vf in the sense just described.

Formally, vg
i= vf iff the stockout state of all stations Ni is the same in vg and vf . Let

ξgmwvi
f

=

∑
vg

i=vf

ωgmwvgξgmwvg∑
vg

i=vf

ωgmwvg

.

For f ∈ Ni ∩ Svf
, this equality yields

pifmwvf
(Li; θ, ξ·mw·)

=
exp

(
β0 + β1d (Li, Lf ) + β2bafm′w + γf + γm + γw×di(f) + ξfmwvf

)
1 +∑

g∈Ni∩Svf
exp

(
β0 + β1d (Li, Lg) + β2bagm′w + γg + γm + γw×di(g) + ξgmwvi

f

) ,
where Svf

denotes the set of set of stations with available bikes in state vf . Then station-use is
given by

λfmwvf
(β1, δ·mw·) =

∫
Li

pifmwvf
(Li;β1, δ·mw·) · PD (Li) dLi. (5.6)

We now apply the nested procedure described before but with one change. Previously, we used
a fixed-effects estimator for the decomposition of δft (Eq. 5.1) and the estimation of β1 (Eq. 5.5);
now we use the weighted fixed-effects estimator for

δfmwvf
= β0 + β2bafmw + γf + γm + γw×di(f) + ξfmwvf

,
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with weights √ωfmwvf
, to obtain β2, β0, and the fixed effects. Similarly, β1 is now given by the

weighted estimator
β̂1 = arg min

β1

∑
fmwvf

ωfmwvf

(
γf + ξfmwvf

)2
.

Implementation Details. The procedure was implemented in R. The open-source package
IPOPT (interfaced with R via ipoptr [Ypma, 2010]) was used for nonlinear optimization—in partic-
ular, the weighted least-squares estimator of β1. The “ffdf” class in R was employed to accommodate
the large scale of our data set. Even though we transformed our problem from the time domain to
the local stockout state domain, computing the choice probabilities for each commuter, and then
summing over them, was computationally expensive; the initial runtime was of the order of tens of
days on a contemporary computer of the workstation class. Implementing the station-use compu-
tation function (Eq. 5.6 as a function of β1 and δ) in C++ and then integrating with R reduced
computation time by a factor of nearly 100, or to about 11 hours for the central Paris data set.

6. Results

To facilitate comparison with our main model, we also provide the results from estimation of the
following simple station-level model:

λfmw ∼ η0 + η1 df + η2 bafm′w + fixed effects;

here λfmw is the average of all λft such that m(t) = m, w(t) = w, and f ∈ St—that is, the average
use at station f in month m in time-window w conditional on the station being stocked in. The df
term is the distance to the station nearest to station f , a proxy for the distance that commuters must
travel to reach the station. As already discussed, stations with far-off neighbors would see increased
use from the focal station’s larger catchment area but also decreased use because commuters must
walk farther. The coefficient η1 captures both of these effects, yet the estimate of η1 is not in
itself sufficient to infer commuter disutility for distance. Note, however, that if commuters were
totally unconcerned about distance then the effects stemming from the catchment area and from
the disutility of walking would both disappear; in that case, we would expect η1 to be zero. As
in the structural model, historic bike-availability is included through the covariate bafm′w, and the
estimate for coefficient η2 can be directly compared with the estimate from our main model.

We consider two variants of this station-level model. The first is a so-called pooled specification
that introduces fixed effects at the district × time-window level. Variation across stations identi-
fies the distance effect, while variation across stations, time-windows, and months identifies the
historical bike-availability effect. Yet because station bike-availability could depend on unobserved
station and time-window characteristics, the estimated coefficients might exhibit an endogeneity
bias. The second specification addresses this problem by introducing finer fixed effects at the
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Value Std. error$ Value Std. error$ Value Std. error#

Bike-Availability 0.037 (0.005)*** 0.018 (0.003)*** 0.304 (0.061)***

Walking Distance 0.059 (0.012)*** 0.082 (0.023)*** -4.813 (0.024)***

TimeWindow × District F. E. Yes
Station × TimeWindow F. E. Yes
Station F. E. for Service Level Yes
Adjusted R2 0.69 0.14 0.65
F-stat (p-value) 0.00 0.00
Wald Test (p-value) 0.00

%Increase in Demand
Short Term Long Term

9.56% 11.73%
6.65%

*(p-value<0.05)   **(p-value<0.01)   ***(p-value<0.001)
$Robust Standard Errors
#Bootstrapped Standard Errors

Marginal Effects

10% increase in Bike-Availability

10% decrease in Walking Distance

(1) (2) (3)
Structural Model Fixed Effects Pooled

Table 3. Estimation Results

station × time-window level. This specification is closer to our structural model. In this variant
and also in the structural model, only the longitudinal variation is used to estimate the impact
of bike-availability; the distance coefficient is then estimated in a second step by decomposing the
estimated station fixed effects.

Table 3 reports the estimation results. Columns (1) and (2) give the estimated coefficients from
the two variants of the station-level model; column (3) presents the results from estimating our
main structural model. Both the distance effects and the bike-availability effects turn out to be
statistically and economically significant in the two station-level models, as seen in columns (1)
and (2). The coefficients change significantly between these two models, which underscores the
importance of adding station-level fixed effects to address concerns about the endogeneity of bike-
availability. The estimates derived from our model with station-level fixed effects imply that a 0.1
increase in bike-availability leads to a 1.33% increase in the use of a typical station. Increasing the
distance to the next nearest station by 100 meters increases use at the focal station by 6.04%. This
latter finding captures the catchment area effect as well as commuter sensitivity to distances, and
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the increase is likely driven by substitution from other stations. Estimates from the simple model
are not that informative about commuter sensitivity to station distances, which motivates our use
of the structural model.

Column (3) of Table 3 reports the estimation results for the structural model. These estimates are
for md = 3 and dismax = 600 m; that is, each commuter considers the three nearest stations within
600 meters in his choice set. The numerical integration is carried out using a square grid with D = 50
meters. Further, for computational efficiency we include only the eight most frequently realized local
stockout states when a station is stocked in; in other words, for each station×month× time-window
we use only the eight most frequent local stockout states (these states account for 75.82% of
our data). In Section 8 we check the robustness of our estimates to each of these computational
choices. Standard errors are computed via bootstrapping with replacement; in the table, they are
given in parentheses.

Our structural model finds that the bike-availability effect is positive and significant and that
the effect of distance is negative and significant. In other words, commuters incur a significant
disutility from more distant stations and derive a higher utility when stations are more reliably
in stock. While the direct estimates from this model describe the effect of changing distances and of
bike-availability on utility, the effects of these factors on system-use—which we discuss next—may
be of more practical value.

First consider the effect of changing distance on system-use. We take a hypothetical city with
the same station network structure but in which all commuter–station distances are reduced by
10%. In essence, this shrinks the city’s area by 19% (1− 0.92) and increases the density of stations
by 23.4%. We then use our commuter choice demand model (now with parameter estimates) to
predict system-use while accounting for commuters who choose the outside option. Finally, we
scale the system-use from this shrunken city to account for the smaller area. This analysis is
akin to reducing distances—by adding more stations in the network—while preserving all spatial
relationships between stations, which are critical in determining the demand pattern. From a
computational perspective, this approach is equivalent to using the demand model with β̂1 = 0.9β1.
The rate of system-use per two-minute period is then given by

∑
f,m,w

∑vf∈Vf
ωfmwvf

λfmwvf

(
x·mw, δ·mw·; β̂1

)
∑
vf∈Vf

ωfmwvf

bafmw

 ,
where the first part gives the rate of demand at each station × month × time-windowand then
multiplying by bike-availability yields the rate of system-use. We find that a 10% reduction in
distances results in a 6.65% increase in system-use.

Second, the estimates from our structural model also allow us to estimate how commuters behave
when a station stocks out. We find that, on average, 95.6% of a stocked-out station’s demand is
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lost (so only 4.4% of its unserved commuters substitute other stations). This figure is calculated
by removing one station at a time from the network and then re-computing total demand from our
demand model for remaining stations. We follow this procedure for all stations, one by one; the
reported estimate is the average effect, or the effect of removing a typical station. The implication
is that a 10% increase in bike-availability would lead to an immediate 9.56% increase in system-
use—yet this is only the short-term (direct) effect.

Our estimated model reveals, in addition, a long-term effect that may be due to the changing
long-term behavior of commuters (e.g., more commuters incorporating bike-share systems into
their lifestyles). As with the distance effect, we compute this effect by considering a network of
stations in which each station has 10% higher bike-availability than the status quo. We then use
our commuter-level choice model (again with estimated parameters) to compute the new level of
system-use as follows:

∑
f,m,w

∑
vf∈Vf

ωfmwvf
λfmwvf

(
x·mw, δ̂·mw·;β1

)
∑
vf∈Vf

ωfmwvf

b̂afmw;

here both δ̂·mw· and b̂afmw incorporate the higher bike-availability. In sum: increasing the bike-
availability of all stations by 10% would increase system-use by 11.73%; of this, 9.56% is the
immediate short-term effect. The same estimates can also be interpreted in terms of the absolute
changes to station network design. We find that reducing the distance between stations by 100
meters increases system-use by 37.57%; also, an increase in the bike-availability by 0.1 increases
system-use by 12.63%.

We have reported that about 95% of a station’s demand is lost if it is stocked out and thus
effectively removed from the system. This number indicates that station demand is extremely
local: commuters rarely substitute. Next we explore whether this finding is a truly broad effect
or is instead driven by a few critical stations that are located far from other stations. Whereas
the former explanation suggests that systemwide changes are needed, the latter implies that local
changes could improve system-use. To estimate the influence of any one station on this lost demand,
we iteratively remove individual stations from the network and then use our fitted commuter choice
model to estimate resulting system-use; this procedure is followed for each station in the network.
Figure 6.1(a) shows the distribution of demand lost in response to removing different stations from
the network. We find low rates of substitution for the vast majority of stations, so any increase in
system-use would require systemwide changes; that is, the low substitution rate is not driven by
few isolated stations.

We also investigate the distance effect more thoroughly by examining the distribution of distances
that commuters walk to reach a station. Because these distances are not observed directly, their
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Figure 6.2. Iso-Ridership Curves

distribution is derived from the estimated demand model. In particular, the probabilistic decisions
of each latent commuter are combined to yield the distribution curve plotted in Figure 6.1(b).
We find that the median commuter travels about 150 m to reach her preferred station; but some
commuters walk longer distances.
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The preceding estimates predict the effects of changing station density or bike-availability.
Achieving changes of this type requires costly investments, such as adding stations and/or bikes and
changing system management policies (increasing bike trans-shipment, offering demand-balancing
incentives, etc.). A system manager with limited resources will likely be unable to make all these
investments and so must identify improvements that lead to the most improvement. Towards that
end, comparing the effects of increased bike-availability and increased station density is key to
identifying investments that yield the highest return. A complete analysis along such lines requires
data that can be used for relating investment amounts to the changes achieved; Figure 6.2 plots
iso-ridership curves, which can help with this decision. Each curve represents a combination of
bike-availability and distance changes that lead to the same ridership. The dotted curve represents
the status quo system-use, and the point denoted by a star indicates that a 105% increase in station
density, when combined with an 0.05 decrease in bike-availability, would lead to the same system-
use as the status quo. Alternately, 20% increases in use can be achieved by all changes along the
dashed curve—for example, by increasing station density by 17% and bike-availability by 0.05, or
by decreasing station density by 26% and increasing bike-availability by 0.1, and so forth. This
curve shows that, on average, the effect on ridership from an 0.05 increase in bike-availability is
equivalent to the effect of increasing station density by 52%.

7. Counterfactual Analysis: Alternate System Designs

The foregoing analysis discussed improvements in accessibility or availability, all of which come
at the cost of adding bikes or making other changes. In this section, we consider another analysis
that illustrates how our estimates can be used. In particular, we consider alternate station network
designs that each include the same number of bikes and docking points but place different emphasis
on satisfying the competing demands of station accessibility and bike-availability. The number of
bikes and the corresponding number of docks primarily determine the costs of bike-share systems;
bikes and docks are often the main costs, or all other other costs such as operation, maintenance
and land are proportional to the number of bikes. Thus, all system designs compared in this section
have the same costs, yet some might have higher ridership.

Given a fixed budget, the system designer is constrained to build station networks with a fixed
number of bikes and docks, where the number of docks is typically set at a fixed multiple of the
number of bikes. That being said, a given number of bikes can be used to build alternate station
networks that prioritize either accessibility or availability. On the one hand, a network with many
distributed stations but relatively fewer bikes at each station (high density; Figure 7.1(a)) reduces
commuter distances to stations, which increases accessibility. On the other hand, a network with
fewer stations but with more bikes at each station (low density; Figure 7.1(b)) can achieve higher
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Figure 7.1. Accessibility–Availability Trade-Off in Station Design

bike-availability owing to the well-known statistical benefits of holding pooled inventory in systems
with demand variability (Cachon and Terwiesch [2009]). Thus, there is a trade-off in network-design
between the demands of accessibility and availability. Hence information about how commuters
value these two aspects can help system designers make optimal trade-offs between them.

In order to compare station networks with the same number of bikes but different density or
size of stations, we must first calculate two effects on ridership. The first is directly computable
using previously developed estimates and analysis; changing the station density alters the distances
that commuters must travel and thereby changes system-use. The second effect is more involved.
Changing station density while keeping the number of bikes and docks fixed requires that each sta-
tion increase or decrease its number of bikes. The result is a change in the statistical pooling effect,
which in turn alters bike-availability. So far we have used our estimates to translate availability
into ridership; now, however, we must estimate how station size or density affects bike-availability.
For instance, how would bike-availabilities change if we split a station in two and divided both
bikes and anticipated demand equally between them? We obtain this relationship via a simulation
that assumes demand to be Poisson distributed and calibrates the system’s use rate to the average
use rate at stations. Figure 7.2(a) plots the results of this simulation. As expected, when den-
sity is increased and each station has fewer bikes, average bike-availability levels across the system
falls; or bike-availability increases in the number of bikes that stations have due to statistical scale
economies.

Armed with this simulation (which relates density to availability) and our estimates (which relate
density and availability to ridership), we have all the elements needed to compare alternate station
designs and identify the optimal one. Formally, consider a counterfactual scenario in which station
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density is scaled by a factor of σ. As before, this is done by replicating the current configuration
so that distances between stations are scaled by a factor of σ−1/2 . For example, if σ = 4 then
station density increases by 4 times and all distances between stations become half of their current
distances. This approach allows the counterfactual station design to retain the spatial properties of
station placement, including unobserved practical constraints in station placement. Counterfactual
bike-availability at each station×time-window×month is the original level scaled by the ratio of the
bike-availability at density scaling σ and at density scaling 1 (from the simulation, Figure 7.2(a)),
and is capped between 0 and 1.

We now use our estimated model to compute system-use for the counterfactual network at station
density scaling σ: ∑

f,m,w

∑
vf∈Vf

ωfmwvf
λfmwvf

(
x·mw, δ̃·mw·; β̃1

)
∑
vf∈Vf

ωfmwvf

b̃afmw,

where β̃1 = σ−1/2β and where both δ̃·mw and b̃afmw include the changed bike-availability as in
Figure 7.2(a).

Figure 7.2(b) shows the system-use predicted for station networks with different station density.
The horizontal axis represents density scaling as a multiple of existing density; for instance, x = 1
corresponds to the status quo network and x = 2 corresponds to a network with twice the density
of the status quo. The vertical axis shows the percentage change in use as compared with the
status quo network. Dotted lines indicate the 95% confidence level around our estimates.
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Comparing multiple alternate station designs reveals that the bike-share system in central Paris
could increase system-use by as much as 29.41% (268,440 more trips/month) via deploying designs
that are denser than the status quo (i.e., if the system split existing stations into smaller stations,
increasing station accessibility while decreasing bike-availability). This finding states, in essence,
that the existing system does not optimally trade off commuter preferences for accessibility with
those for availability. In particular, at the status quo the gains from increasing accessibility domi-
nate those from increasing availability. Not surprisingly, the benefits from increasing station density
and accessibility are diminishing: beyond a certain point, any increase in density actually leads to
declining system-use; thus the trade-off is reversed, and the availability effect then dominates the
accessibility effect. Recall that each of these alternate systems has the same number of bikes and
of docks, which constitute the main capital investment in these systems. That is to say: If the city
of Paris had been given access to analysis and estimates of commuter preferences for accessibility
and availability, such as those provided in this paper, then it could have designed a system that
achieved from 20% to 30% more use without adding a single new bike or dock to the system.

8. Robustness

We test the robustness of our effect sizes to alternate model specifications and to computational
choices made in model estimation. Table 4 reports the results of our estimation under many
alternate assumptions; row (1) replicates our original estimates (from Table 3) for easy comparison.
Rows (2) and (3) of the table report the estimates obtained under alternate definitions of bike-
availability. Row (2) gives estimates from a model where a station is said to be in-stock or have
bikes available if there are more than four bikes available at the station (versus five bikes in the
original estimation); the results are nearly identical to the base estimates. Row (3) uses a station-
specific threshold for stockouts whereby a station is stocked in if it has more bikes than the minimum
achieved over the day (if that minimum is less than five bikes). Again, the estimates are similar to
those obtained under our original regressions except for the long-term bike-availability effect, which
is higher here.

Next we consider a quadratic effect of distance. So in addition to all the original components
of the a commuter’s utility from using a bike at station f (Eq. 4.1), the utility now includes a
quadratic effect of distance:

ûifmwvf
= β0 + β11d (Li, Lf ) + β12d (Li, Lf )2 + β2baf,m′ ,w + γf + γm + γw×di(f) + ξfmwvf

+ εift.

Row (4) of Table 4 reports the results from this model. We find that the disutility from distance is
locally concave; that is, the marginal disutility of walking decreases with distance. The marginal
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Short-Term Long-Term

(1) 0.304 -4.813 9.56% 11.73%
(0.061)*** (0.024)***

(2) 0.332 -4.795 9.57% 12.01%
(0.059)*** (0.273)***

(3) 1.093 -4.893 9.57% 18.05%
(0.184)*** (0.266)***

(4) 0.27 -16.151 9.64% 11.53%
(0.056)*** (1.979)***

25.862  
(1.707)***

(5) 0.38 -3.23 9.53% 12.28%
(0.072)*** (0.283)***

(6) 0.41 -3.91 9.60% 12.29%
(0.080)*** (0.540)***

(7) Finer Grid Size 0.29 -4.59 9.57% 11.65%
(0.070)*** (0.299)***

1Linear distance effect
2Quadratic distance effect

Walking 
Distance

10% Increase in Bike-
Availability

Quadractic Effect 
of Distance

Original 
Estimates

Bike-
Availability

5.35%

5.53%

6.40%

10% Decrease in 
Walking Distance

Stockout: Min. 
Bikes 

Stockout: 
Bikes

Number of states: 
top 16

Choice Set: 

6.65%

6.63%

6.75%

7.50%

md=4

≤ 4

Table 4. Robustness Tests

effects of bike-availability and station distance are again close to those derived from our original
model.

Finally, we investigate the role of various computational choices made in estimation. Row (5)
gives the results when we set md equal to 4 instead of to 3; in this case, then, commuters consider
the four nearest stations in their choice set within distance dismax. Using this alternate value, we
find that the bike-availability effect remains almost the same while the distance effect decreases by
a single percentage point. Row (6) of the table reports results from using the 16 most frequently
occurring local stockout states in each station × month × time-window instead of the top 8 stock
states. That change increases the coverage of our sample from 75.82% to 82.14% of relevant
observations, yet once again the result is virtually the same in our estimated effects. In row (7) we
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provide estimates obtained by using a finer grid for our numerical integration (viz., one that covers
4 times as many points); this produces no qualitative change in the estimated effects.

In short, we find that our estimates are robust to various model specifications, variable definitions,
and computational choices.

9. Discussion

Each commuter use of a bike-share system involves two transactions: the commuter must choose
a station with available bikes; and he must also be able to return the bike to a station with empty
docking points. Thus each station features two streams of use—outgoing and incoming—and so
there are two kinds of availability, bike-availability and docking-point availability. System-use
presumably depends on both kinds of availability, but our analysis has focused on outgoing use and
bike-availability.

Observe that at the system level, incoming and outgoing use must be equal and each corresponds
to the number of trips; therefore, either use type can be analyzed to develop important prescriptions
for system-use. Yet bike-availability and dock-availability can have different and significant effects
on system-use. There are two important differences between these effects that make the analysis
of bike-availability far more relevant. First, when bikes are not available, the commuter has the
option of either seeking out another station or forgoing the bike-share system entirely. However,
the same cannot be said when docking points are not available: the affected commuter does not
have the option of abandoning the bike and she can complete her trip only by finding another
station (commuters using Vélib’ get an extra 15 free minutes when the preferred station has no
available docking points). Note that in this case the commuter can ride the bike to an alternate
station, which is presumably easier than walking there. So in the short term, use is affected more
by bike-availability than by the availability of docking points.

Second, bike-share systems are designed with many more docking points than bikes (to accom-
modate demand asymmetries at different times of the day, etc.); there are usually almost twice as
many docking points as bikes. Hence not finding an available dock is much rarer (in our data) than
not finding an available bike. So even though an under-supply of docking points will degrade the
commuter experience and, in the long run, have a negative effect on system-use, from a practical
standpoint we expect that docking point availability has a much weaker impact. Together these
trends indicate that, in the short run and over the long run, system-use is much more likely to
be affected by bike-availability than dock-availability; hence our analysis focuses on the former. It
is theoretically possible to extend our model so that it includes docking point availability, but by
doing so, we expect to find no significant differences than our current model despite much higher
computational complexity.
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This paper provides the first empirical estimates of commuter response to accessibility (walking
distance) and availability (service level) in the context of bike-share systems. Our analysis shows
that incorporating these estimates into system design can result in much-improved systems. Our
estimates are also applicable in contexts beyond bike-sharing—in particular, for the design of retail
distribution networks. Furthermore, the methodology developed here can be used in a variety of
demand estimation contexts where products are spatially differentiated and with choice sets that
change frequently.

In future work, we hope to address the limitations of this study. First, a more detailed data set
on commuter starting locations would improve the precision of estimates such as those obtained
here. Second, a larger study comparing many cities could provide insight not only into how com-
muter preferences vary by city but also into how those preferences might be driven by different
demographic and/or geographic factors. Such analyses could help bike-share systems fully deliver
on their promise of transforming urban lifestyles.
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